Size-affected shear-band speed in bulk metallic glasses
نویسندگان
چکیده
منابع مشابه
Shear Band Formation in Bulk Metallic Glasses
In recent times, there has been a growing interest in the machining of amorphous metallic alloys, which are also called bulk metallic glasses (BMGs). These materials differ from common polycrystalline metallic alloys, because their atoms do not assemble on a crystalline lattice, and as a result, they have unique physical, mechanical, and chemical properties. A number of BMGs have been found to ...
متن کاملFracture behaviors under pure shear loading in bulk metallic glasses
Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitabl...
متن کاملShear-banding Induced Indentation Size Effect in Metallic Glasses
Shear-banding is commonly regarded as the "plasticity carrier" of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a "distributed" fashion to a "localized" mode when the result...
متن کاملSize-dependent fracture toughness of bulk metallic glasses
The fracture toughness is a critical material property that determines engineering performance. However, as is well known for crystalline materials, if certain sample geometry and size requirements are not met, test results become sample-size dependent and difficult to compare between different studies. Here, the room-temperature fracture toughness of the Zr-based bulk metallic glass (BMG) Zr52...
متن کاملNanoscale Solute Partitioning in Bulk Metallic Glasses
Adv. Mater. 2008, 20, 1–4 2008 WILEY-VCH Verlag Gmb A T IO N Fundamental understanding of composition variations and morphology in the nanoscale is essential to the design of advanced materials. Partial crystallization or devitrification of bulk metallic glasses (BMGs) results in novel microstructures, with high density (10–10m ) nanocrystalline precipitates evenly distributed in a glassy matri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2011
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.3656016